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Let ε > 0. We construct an explicit, full-measure set of α ∈
[0, 1] such that if γ ∈ R then, for almost all β ∈ [0, 1], if δ ∈ R
then there are infinitely many integers n � 1 for which

n‖nα− γ‖ · ‖nβ − δ‖ <
(log logn)3+ε

logn
.

This is a significant quantitative improvement over a result of 
the first author and Zafeiropoulos. We show, moreover, that 
the exceptional set of β has Fourier dimension zero, alongside 
further applications to badly approximable numbers and to 
lacunary diophantine approximation. Our method relies on a 
dispersion estimate and the Three Distance Theorem.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Littlewood’s conjecture (circa 1930) is a central problem in diophantine approxima-
tion. It states that if α, β ∈ R then
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lim inf
n→∞

n‖nα‖ · ‖nβ‖ = 0,

where ‖ · ‖ denotes the distance to the nearest integer. The problem lies at the heart of 
Margulis’s measure rigidity conjecture [15] and, as such, is also a holy grail of homoge-
neous dynamics.

Gallagher [11] determined the multiplicative approximation rate of a generic pair of 
reals. We write N = Z>0 throughout.

Theorem 1.1 (Gallagher, 1962). Let ψ : N → (0, ∞) be monotonic, and denote by W×
2 (ψ)

the set of (α, β) ∈ [0, 1]2 such that

‖nα‖ · ‖nβ‖ < ψ(n)

holds for infinitely many n ∈ N. Then the Lebesgue measure of W×
2 (ψ) is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if
∞∑

n=1
ψ(n) log n < ∞

1, if
∞∑

n=1
ψ(n) log n = ∞.

In particular, for Lebesgue almost all (α, β) ∈ R2, we have

lim inf
n→∞

n(logn)2(log logn)‖nα‖ · ‖nβ‖ = 0.

However, for the purpose of proving Littlewood’s conjecture, we may assume that α1, α2
are badly approximable. Here we recall that α ∈ R is badly approximable if

inf{n‖nα‖ : n ∈ N} > 0.

The set Bad of badly approximable numbers has Lebesgue measure zero so, in some 
sense, Gallagher’s theorem fails to capture the essence of Littlewood’s conjecture. With 
this in mind, Pollington and Velani [18] established that a similar result holds for many 
badly approximable numbers. We write dimH(A) for the Hausdorff dimension of a Borel 
set A ⊆ R.

Theorem 1.2 (Pollington–Velani, 2000). Let α ∈ Bad. Then there exists G ⊆ Bad with 
dimH(G) = 1 such that if β ∈ G then

lim inf
n→∞

n(logn)‖nα‖ · ‖nβ‖ � 1.

The assumption that α ∈ Bad was subsequently relaxed by the first author and 
Zafeiropoulos [6], and the result made ‘fully inhomogeneous’. We require some notation 
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to state it. Given α ∈ [0, 1], we consider its partial quotients ak(α) and its continuants 
qk(α). Define

K := {α ∈ R : Λ(α) < ∞} where Λ(α) = sup
{

log qk(α)
k

: k � 1
}
.

The set K includes almost all real numbers, as Λ(α) almost surely equals the Lévy 
constant:

Λ(α) = π2

12 log 2 ≈ 1.187.

Moreover, Bad ⊂ K, since badly approximable numbers have bounded partial quotients.

Theorem 1.3 (Chow–Zafeiropoulos, 2021). Let α ∈ K and γ, δ ∈ R. Then there exists 
G ⊆ Bad with dimH(G) = 1 such that if β ∈ G then

lim inf
n→∞

n(logn)‖nα− γ‖ · ‖nβ − δ‖ � 1.

Haynes, Jensen and Kristensen [13] investigated a similar problem in which G does not 
depend on δ. Their main result was sharpened by the second author and Zafeiropoulos 
[22], and then generalised by the first author and Zafeiropoulos [6].

Theorem 1.4 (Chow–Zafeiropoulos, 2021). Let ε > 0, α ∈ K and γ ∈ R. Then there 
exists G ⊆ Bad with dimH(G) = 1 such that if β ∈ G and δ ∈ R then

n‖nα− γ‖ · ‖nβ − δ‖ <
(log log logn)ε+1/2

√
log n

has infinitely many solutions n ∈ N.

We present the following stronger version.

Theorem 1.5. Let ε > 0, α ∈ K and γ ∈ R. Then there exists G ⊆ Bad with dimH(G) = 1
such that if β ∈ G and δ ∈ R then

n‖nα− γ‖ · ‖nβ − δ‖ <
(log logn)3+ε

logn (1.1)

has infinitely many solutions n ∈ N.

The quantitative threshold here is close to that of Pollington and Velani’s in Theorem 1.2.
For δ ∈ R, define

Bad(δ) = {β ∈ R : inf{n‖nβ − δ‖ : n ∈ N} > 0},
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and set

B = {(β, δ) ∈ R2 : β ∈ Bad ∩ Bad(δ)}.

The short argument in [6, Section 5], based on Marstrand’s slicing theorem [9, The-
orem 5.8] and a result of Tseng [23] on twisted approximation, delivers the following 
consequence.

Corollary 1.6. Let ε > 0, α ∈ K and γ ∈ R. Then there exists G ⊆ B with dimH(G) = 2
such that if (β, δ) ∈ G then (1.1) has infinitely many solutions n ∈ N.

The upshot is that here β is δ-inhomogeneously badly approximable, which is “natural 
and desirable” for these problems, as discussed in the introduction of [19].

The Fourier decay of certain measures is an essential ingredient in the proof of The-
orem 1.5. Before presenting further applications, we contextualise this using the notion 
of Fourier dimension. For Borel A ⊆ R, write M(A) for the set of Borel probability 
measures μ supported on a compact subset of A. For μ ∈ M(A) and ξ ∈ R, we write

μ̂(ξ) =
∫
R

e(−ξx)dμ(x)

for its Fourier transform at ξ, where e(y) = e2πiy. If A ⊆ [0, 1] then, for ξ ∈ Z, this 
matches the definition of the ξth Fourier coefficient [16, §3]. The Fourier dimension of 
A is

dimF(A) = sup{s � 1 : ∃μ ∈ M(A) μ̂(ξ) �s (1 + |ξ|)−s/2 (ξ ∈ R)}.

Remark 1.7. Here f � g means that |f | � C|g| pointwise, for some C, and the subscript 
s means that C is allowed to depend on s. We will use this, as well as other Vinogradov 
and Bachmann–Landau notations, liberally throughout.

Theorem 1.8. Let ε > 0, α ∈ K and γ ∈ R. Denote by E the set of β ∈ [0, 1] for 
which there exists δ ∈ R such that (1.1) has only finitely many solutions n ∈ N. Then 
dimF(E) = 0.

This follows immediately from the following assertion.

Theorem 1.9. Let ε > 0, α ∈ K and γ ∈ R. Denote by E the set of β ∈ [0, 1] for 
which there exists δ ∈ R such that (1.1) has only finitely many solutions n ∈ N. Let 
μ ∈ M([0, 1]), and assume that

μ̂(ξ) � (1 + |ξ|)−τ (ξ ∈ Z) (1.2)

for some τ > 0. Then μ(E) = 0.
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Applying Theorem 1.9 with μ as Lebesgue measure furnishes the following result.

Corollary 1.10. Let ε > 0, α ∈ K and γ ∈ R. Then, for almost all β ∈ R, if δ ∈ R then 
(1.1) has infinitely many solutions n ∈ N.

This sharpens [6, Theorem 1.5], which has roughly (logn)ε−1/2 on the right hand side.

In the course of our work, we also establish some results in lacunary approximation.

Theorem 1.11. Let n1, n2, . . . be a lacunary sequence of positive integers, let ε > 0, and 
let μ be as in Theorem 1.9. Then, for μ-almost all β ∈ [0, 1], if δ ∈ R then

‖ntβ − δ‖ <
(log t)3+ε

t
(1.3)

has infinitely many solutions t ∈ N.

Applying Theorem 1.11 with μ as Lebesgue measure delivers the following result.

Corollary 1.12. Let n1, n2, . . . be a lacunary sequence of positive integers, and let ε > 0. 
Then, for almost all β ∈ R, if δ ∈ R then (1.3) has infinitely many solutions t ∈ N.

We will also be able to infer the following badly approximable analogue.

Theorem 1.13. Let n1, n2, . . . be a lacunary sequence of positive integers, and let ε > 0. 
Then there exists G ⊆ Bad with dimH(G) = 1 such that if β ∈ G and δ ∈ R then (1.3)
has infinitely many solutions t ∈ N.

Once more, we apply the short argument in [6, Section 5], giving rise to the following 
result about inhomogeneously badly approximable numbers.

Corollary 1.14. Let n1, n2, . . . be a lacunary sequence of positive integers, and let ε > 0. 
Then there exists G ⊆ B with dimH(G) = 2 such that if (β, δ) ∈ G then (1.3) has infinitely 
many solutions t ∈ N.

We stress that our results are all uniform in the shift δ, which limits the set of available 
techniques. More is known when β is allowed to depend on δ. We state below a special 
case of [5, Theorem 1.8].

Theorem 1.15 (Chow–Technau, 2021+). Let α ∈ R be irrational and non-Liouville, and 
let γ, δ ∈ R. Let ψ : N → (0, ∞) be monotonic with

∞∑
ψ(n) log n = ∞.
n=1
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Then, for almost all β ∈ R, there exist infinitely many n ∈ N such that

‖nα− γ‖ · ‖nβ − δ‖ < ψ(n).

For example, taking ψ(n) = 1/(n logn · log logn) gives

lim inf
n→∞

n(logn)‖nα− γ‖ · ‖nβ − δ‖ = 0

in this context. Theorem 1.15 was proved using the Bohr set machinery developed in 
[3,4], and settled a conjecture of Beresnevich, Haynes and Velani [2].

The lacunary theory is also well understood when the shift is fixed. We state a special 
case of [19, Theorem 1].

Theorem 1.16 (Pollington–Velani–Zafeiropoulos–Zorin, 2022). Let δ ∈ R, let n1, n2, . . .
be a lacunary sequence of positive integers, and let μ be as in Theorem 1.9. Let ψ : N →
[0, 1], and denote by W(ψ) the set of β ∈ [0, 1] such that

‖ntβ − δ‖ � ψ(t)

has infinitely many solutions t ∈ N. Then

μ(W(ψ)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if
∞∑
t=1

ψ(t) < ∞

1, if
∞∑
t=1

ψ(t) = ∞.

Theorem 1.11 is quantitatively close to the threshold in Theorem 1.16 — as a function 
of t — and it comes with the ‘shift-uniformity’ attribute: the set of allowed β does not 
depend on δ in Theorem 1.11 (unlike Theorem 1.16, which does not have this attribute).

The analogous inhomogeneous multiplicative approximation problem with uniformity 
in both γ and δ has also been considered. Shapira [21] was the first to obtain such a 
result. Subsequently, Gorodnik and Vishe [12] demonstrated the following quantitative 
refinement.

Theorem 1.17 (Gorodnik–Vishe, 2016). There exists κ > 0 such that, for almost all pairs 
(α, β) ∈ R2,

lim inf
|n|→∞

|n|(log log log log log |n|)κ‖nα− γ‖ · ‖nβ − δ‖ = 0

for any γ, δ ∈ R.
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Our results are quantitatively much stronger than this. However, uniformity in both γ
and δ presents a further challenge that our method seems unable to overcome.

2. Lacunary Diophantine inequalities

Various authors counted solutions to certain lacunary diophantine equations. We state, 
for imminent use, a variant of a lemma of Rudnick and Zaharescu, see [20, Lemma 2.2], 
in which the dependence on the number of variables is made explicit.

Lemma 2.1. Let A1 � A2 � · · · � As be positive integers. Then, for any b ∈ Z and any 
Y ∈ N, there are at most 8sY s−1 integer vectors y ∈ [−Y, Y ]s such that

|A1y1 + · · · + Asys + b| � A1.

Proof. This is a straightforward adaptation of the proof of [20, Lemma 2.1]. The only 
change is to use an explicit version of the Lipschitz principle. The points lie in the region

Ω = {y ∈ [−Y, Y ]s : |y1 + λ2y2 + · · · + λsys + c| � 1},

for some λ2, . . . , λs ∈ (0, 1] and some c ∈ R. By [1, Theorem 1.1], the number of integer 
points in Ω is at most

2sY s−1 +
s−1∑
j=0

(
s

j

)
(2Y )j � 8sY s−1,

as claimed. �
By adapting the proof of [20, Lemma 2.3], we establish the following estimate for 

the number of solutions to a certain diophantine inequality. The result is sharp up to 
logarithmic factors, owing to possible diagonal solutions. Unlike [20, Lemma 2.3], it 
is uniform in the number of variables. It is also more general, in that it deals with 
inequalities and the ranges are allowed to differ. Our argument is slightly more refined, 
so we present it in full.

Lemma 2.2. Let a(1), a(2), . . . be a lacunary sequence of positive integers, and let r ∈ (1, 2]
be such that

a(n + 1) > ra(n) (n ∈ N).

Let s ∈ N, let Z � Y � 2, and let K ∈ [0, a(Z)/8]. Assume that 4s � Z. Then there 
exists a constant R = R(r) > 1 so that are at most

s!Rs max{(Y Z logZ)s/2, Y s−1Z(logZ)s−1}
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integer solutions to

|y1a(z1) + · · · + ysa(zs)| � K

such that

0 < |yj | � Y, Z < zj � 2Z (1 � j � s).

Proof. It suffices to count solutions with

z1 � · · · � zs.

To each solution we associate a partition (B1, . . . , B�) of the indices as follows. The set 
B1 comprises those j such that zj � z1 − 2 logZ

log r . With j2 = maxB1 + 1, the set B2

comprises those j � j2 such that zj � zj2 − 2 logZ
log r , and so on. We fix such a partition, 

giving

zjk < zjk−1 −
2 logZ
log r � zjk−1 (2 � k � )

and hence

a(zjk) <
a(zjk−1)

Z2 (2 � k � ).

Next, we count (y, z) corresponding to the partition (B1, . . . , B�).
We start by choosing zj for j ∈ Bk whenever |Bk| � 2. If there are t such values of k, 

then there are at most

Zt

(
3 logZ
log r

)s−�

choices here. Next, we choose yj whenever Bk = {zj}. There are at most (2Y )�−t choices 
here.

By the triangle inequality, we have |B1| � 2 and

|y1a(z1) + · · · + yj2−1a(zj2−1)| < a(z1).

This has at most 8j2−1Y j2−2 solutions (y1, . . . , yj2−1), by Lemma 2.1.
If |B2| � 2 then we have

|yj2a(zj2) + · · · + yj3−1a(zj3−1) + b| < a(z2),

for some b ∈ Z that has been determined. This has at most 8j3−j2Y j3−j2−1 solutions 
(yj2 , . . . , yj3−1), by Lemma 2.1. Otherwise, |B2| = 1 which implies
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|y2a(z2) + b| < a(z2)
2 .

If y2 > 0 then

b

2y2
< a(z2) <

2b
y2

,

which has at most 5/ log r solutions z2. Similarly, if y2 < 0 then there are 5/ log r solutions 
z2.

Repeating the argument, our total count for this partition is

(240/ log r)sY s−tZt(logZ)s−�.

Because  � t, this quantity is at most

(240/ log r)sZt(Y logZ)s−t.

As 1 � t � s/2, we obtain

(240/ log r)s max{(Y Z logZ)s/2, Y s−1Z(logZ)s−1}.

Finally, there are at most 2s partitions, and at most s! permutations of the variables. �
3. Dispersion

We require a quantitative description of how dense a finite set of points is. Whereas 
previous authors have used discrepancy, we use dispersion. Given a set A ⊂ [0, 1) of 
T � 2 elements

0 � a1 < a2 < · · · < aT < 1,

its dispersion (the largest gap in the nearest neighbour spacing statistic) is

disp(A) = max
t�T

(at+1 − at) where aT+1 = a1 + 1,

cf. [8, Definition 1.15]. If the elements in A are chosen independently and uniformly in 
[0, 1) at random, then disp(A)  logT

T with high probability — see David and Nagaraja’s 
monograph on order statistics [7, Section 6.4]. The following result asserts that this is 
approximately true when A is a segment of a generically-dilated lacunary sequence.

Theorem 3.1. Let n1, n2, . . . be a lacunary sequence of positive integers, and let r ∈ (1, 2]
be such that

nt+1 > rnt (t ∈ N).
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Let ε > 0, and let μ, τ be as in Theorem 1.9. Then

disp({ntβ mod 1 : T < t � 2T}) �β,r,ε,τ
(log T )3+ε

T
, (3.1)

for μ-almost all β ∈ [0, 1].

As ε > 0 is arbitrary, it suffices to establish (3.1) with the right hand side replaced 
by D/T , where

D = (log T )3+2ε.

The plan is to show that, generically, intervals of length roughly D/T have the expected 
number of points. To this end, we use a concentration argument and the union bound.

Let ω : R → R�0 be a bump function supported on [−1, 1] such that 
∫∞
−∞ ω(x) dx = 1. 

This necessarily has the Fourier decay property

ω̂(ξ) �N (1 + |ξ|)−N

for each N > 0, which follows from integration by parts — see for instance [17, Equation 
(3.1.12)]. Let c ∈ (0, 1), and define

CT (β) = CT,c(β) =
∑
u∈Z

∑
T<t�2T

ω

(
ntβ − c + u

D/T

)
, C(β) = CT (β) −D.

To motivate the use of CT (β) and outline our proof strategy, observe that it is a weighted 
count of integers t ∈ (T, 2T ] such that

ntβ ∈ [c−D/T, c + D/T ] mod 1.

In the final stages of the proof, we will cover [0, 1) by O(T/D) many intervals of length 
2D/T . If CT (β) is positive for each of the centres c, then the largest gap cannot contain 
an entire such interval, and so we will conclude that the dispersion is bounded by 4D/T . 
We will achieve this for almost all β by showing that CT (β) is close to its mean D with 
high probability.

Poisson summation yields

CT (β) = D

T

∑
�∈Z

∑
T<t�2T

ω̂(D/T )e((ntβ − c)).

Thus, as ω̂(0) = 1, we have

C(β) = D

T

∑ ∑
ω̂(D/T )e((ntβ − c)).
� �=0 T<t�2T
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Define

L = T

(log T )3+ε

and

C0(β) = D

T

∑
0<|�|�L

ω̂ (D/T )
∑

T<t�2T
e((ntβ − c)). (3.2)

Observe from the rapid decay of ω̂ that

C0(β) = C(β) + O((log T )−100).

Remark 3.2. Here and in what follows, the implied constants are allowed to depend on ω
without specific indication. However, the implied constants will always be independent 
of the shift parameter c.

We may assume that T � 100. Let s ∈ N with 8s � T . We begin with a Fourier series 
expansion

|C0(β)|2s =
∑
k∈Z

ake(kβ), (3.3)

noting that the series on the right is a finite sum. Our goal is to bound

‖C0‖2s
L2s(μ) =

1∫
0

|C0(β)|2sdμ(β) =
∑
k∈Z

ak

1∫
0

e(kβ)dμ(β) =
∑
k∈Z

akμ̂(−k).

This will enable us to show that C0(β) is generically small, and we will see from there 
that CT (β) concentrates around D.

We will evaluate the Fourier coefficients ak in terms of the Fourier coefficients of 
C0(β). We compute from (3.2) that

C0(β) = D

T

∑
0<|�|�L

ω̂ (D/T )
∑

T<t�2T
e((ntβ − c))

= D

T

∑
0<|�|�L

∑
T<t�2T

ω̂ (D/T ) e(−c)e(ntβ) =
∑
m∈Z

bme(mβ),

where

bm = D

T

∑
ω̂ (D/T ) e(−c),
(�,t)
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and the summation runs over all integer pairs (, t) such that

0 < || � L, T < t � 2T, nt = m.

Now

|C0(β)|2s =
∏
j�s

∑
mj ,ms+j∈Z

bmj
bms+j

e((mj −ms+j)β)

=
(D
T

)2s ∏
j�s

∑
0<|�j |,|�s+j |�L
T<tj ,ts+j�2T

ω̂(Dj/T )ω̂(Ds+j/T )

· e((s+j − s)c)e((jntj − s+jnts+j
)β)

=
∑
k∈Z

ake(kβ),

where we see that

ak =
(
D

T

)2s ∑
0<|�1|,...,|�2s|�L
T<t1,...,t2s�2T∑

j�s(�jntj
−�s+jnts+j

)=k

ω̂(Dj/T )ω̂(Ds+j/T )e((s+j − s)c).

Note that |ω̂(ξ)| �
∫∞
−∞ ω(x) dx = 1, for any ξ ∈ R. Therefore

|ak| � (D/T )2sN(k) (k ∈ Z),

where N(k) counts (1, . . . , 2s, t1, . . . , t2s) ∈ Z4s such that

0 < |j | � L, T < tj � 2T (1 � j � 2s) (3.4)

and

∑
j�s

(jntj − s+jnts+j
) = k.

Let R = R(r) > 1 be as in Lemma 2.2.

Lemma 3.3. Let T � 100, and let s ∈ N with 8s � T . Let nT be as in Theorem 3.1, and 
let K ∈ [0, nT /8]. For k ∈ Z, let ak be as in (3.3). Then

∑
|ak| �

(2s)!R2sD2s

(log T )2s+sε
.

|k|�K
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Proof. Observe that
∑

|k|�K

|ak| � (D/T )2sN,

where N counts (1, . . . , 2s, t1, . . . , t2s) ∈ Z4s in the ranges (3.4) such that
∣∣∣∣∣
∑
j�s

(jntj − s+jnts+j
)

∣∣∣∣∣ � K.

By Lemma 2.2, we thus have

∑
|k|�K

|ak| � (D/T )2s(2s)!R2s T 2s

(log T )2s+sε
= (2s)!R2sD2s

(log T )2s+sε
. �

Observe that
∑
k∈Z

|ak| � (D/T )2s
∑
k∈Z

N(k) � (D/T )2s(2LT )2s = (2DL)2s. (3.5)

Proof of Theorem 3.1. We use Lemma 3.3 for the small indices, and the estimates (1.2), 
(3.5) for the large ones. This gives

‖C0‖2s
L2s(μ) =

∑
k∈Z

akμ̂(−k) �
∑

|k|�K

|ak| + K−τ
∑

|k|>K

|ak|

� (2s)!R2sD2s

(log T )2s+sε
+ (2DL)2s

Kτ

for any K ∈ [0, nT /8]. If T is sufficiently large in terms of r, τ , then we can choose

s =
⌊

log T√
log log T

⌋
, K = T 2s/τ ,

whence

‖C0‖2s
L2s(μ) �

(2s)!R2sD2s

(log T )2s+sε
.

Consequently

μ({β ∈ [0, 1] : |CT (β) −D| > D/2}) � (2s)!(2R)2s

(log T )2s+sε
.

Let us now choose a set C = C(T ) ⊂ [0, 1) of cardinality O(T/D) such that the balls 
of radius D/T centred in C cover [0, 1). As
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(2s)!(2R)2s

(log T )2s+sε
= exp (2s log s + O(s) − (2 + ε)s log log T )

= exp(2 log T
√

log log T + o(log T ) − (2 + ε) log T
√

log log T )

= exp(o(log T ) − ε log T
√

log log T ) = T o(1)−ε
√

log log T .

Recalling that CT (β) = CT,c(β), we see that

∞∑
T=1

∑
c∈C

μ({β ∈ [0, 1] : |CT,c(β) −D| > D/2})

�
∞∑

T=1
T

(2s)!(2R)2s

(log T )2s+sε
=

∞∑
T=1

T 1+o(1)−ε
√

log log T �
∞∑

T=1
T−2 < ∞.

Thus, by the first Borel–Cantelli lemma, for μ-almost all β ∈ [0, 1], if T ∈ N is sufficiently 
large in terms of β, r, ε, τ then

CT,c(β) > 0 (c ∈ C).

In particular, for each c ∈ C there exists t = t(c) ∈ (T, 2T ] such that

‖ntβ − c‖ � D/T.

Therefore

disp({ntβ mod1 : T < t � 2T}) � D/T,

as claimed. �
4. Completing the proofs

In this section, we combine Theorem 3.1 with existing tools to establish Theorems 1.5, 
1.9, 1.11 and 1.13. Let f : N → [0, 1] be non-increasing with the doubling property 
f(t) � f(2t), and assume that Theorem 3.1 holds with (3.1) replaced by

disp({ntβ mod1 : T < t � 2T}) = o(f(T )) (T → ∞). (4.1)

By Theorem 3.1, applied with ε/2 in place of ε, we can take

f(t) = (log t)3+ε

t
.

We now show that Theorem 1.11 holds, more generally, with o(f(t)) in place of 
(log t)3+ε/t.
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Proof of Theorem 1.11. For μ-almost all β ∈ [0, 1], we have (4.1). Thus, if T ∈ N then 
there exists t ∈ (T, 2T ] such that

‖ntβ − δ‖ = o(f(T )).

In particular, there exists an increasing sequence of positive integers t along which

‖ntβ − δ‖ = o(f(t)). �
We require the following variant of a lemma of the first author and Zafeiropoulos, 

which draws its power from a quantitative version of the Three Distance Theorem.

Lemma 4.1 (Chow–Zafeiropoulos, 2021). Let α ∈ K and γ ∈ R. Then there exists a 
sequence n1, n2, . . . of positive integers such that

8t � nt � 4e6Λ(α)t, nt‖ntα− γ‖ � 8, nt+1 > 2nt (t ∈ N).

Proof. See [6, Lemma 2.1], and its proof (to see that nt+1 > 2nt). �
We now show that Theorem 1.9 holds, more generally, with f(logn) in place of 

(log logn)3+ε/ logn in (1.1).

Proof of Theorem 1.9. Let α ∈ K and γ ∈ R, and let n1, n2, . . . be as in Lemma 4.1. By 
Theorem 1.11, for μ-almost all β ∈ R, if δ ∈ R then

‖ntβ − δ‖ = o(f(t))

along some infinite sequence of t ∈ N. As lognt �α t, and f is non-increasing with the 
doubling property, we have f(t) �α f(lognt), whence

nt · ‖ntα− γ‖ · ‖ntβ − δ‖ = o(f(lognt))

along this sequence. �
We now show that Theorem 1.5 holds, more generally, with f(logn) in place of 

(log logn)3+ε/ logn in (1.1).

Proof of Theorem 1.5. Let s < 1. Kaufman [14] constructed

μ ∈ M(Bad ∩ [0, 1])

with the following two key properties:
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(i) (Frostman dimension) For any interval I ⊆ [0, 1], we have

μ(I) �s λ(I)s,

where λ denotes Lebesgue measure.
(ii) (Polynomial Fourier decay) We have

μ̂(ξ) � (1 + |ξ|)−7/104
(ξ ∈ R).

We showed that Theorem 1.9 holds, more generally, with f(logn) in place of
(log logn)3+ε/ logn in (1.1). Applying this to the measure μ gives μ(E) = 0, where 
E is the set of β ∈ [0, 1] for which there exists δ ∈ R such that

n‖nα− γ‖ · ‖nβ − δ‖ < f(logn)

has only finitely many solutions n ∈ N. Choosing G = Bad ∩ [0, 1] \ E , we have μ(G) =
1 > 0. Now the mass distribution principle [10, Chapter 4] reveals that dimH(G) � s. As 
s can be taken arbitrarily close to 1, we must have dimH(G) = 1. �
Theorem 1.13 follows in the same way, applying Theorem 1.11 instead of Theorem 1.9.

Closing remarks. In light of the aforementioned random heuristic, it is conceivable that 
one might obtain (logT )1+ε/T on the right hand side of (3.1). This would be interesting 
in its own right, and would also strengthen our other results. Getting the optimal order 
of the dispersion will likely involve lengthy arguments, as this extremal order statistic is 
non-trivial to compute even with perfectly independent random variables at hand — a 
luxury we are not granted in the diophantine setting!
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